Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
AMA J Ethics ; 26(1): E48-53, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180858

RESUMEN

An emerging and important goal of professional health training and education is to develop a workforce that is equipped to address patients' social and structural determinants of health and to contribute to health equity. However, current medical education does not adequately achieve this vision. Emancipatory teaching, as described by scholars such as Paulo Freire and bell hooks, equips students with tools to identify and challenge oppressive systems. It helps students achieve freedom for themselves, thereby contributing to more emancipatory and humanistic patient care. Changing teaching in this way would help reverse implicit curricular values that tend to enshrine hierarchy and oppression. Humanities and bioethics scholars working within health professional schools thus should promote a more critical, emancipatory pedagogy in their institutions.


Asunto(s)
Bioética , Educación Médica , Equidad en Salud , Humanos , Humanidades , Estudiantes
2.
Front Immunol ; 14: 1275890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936700

RESUMEN

The growth and metastasis of solid tumours is known to be facilitated by the tumour microenvironment (TME), which is composed of a highly diverse collection of cell types that interact and communicate with one another extensively. Many of these interactions involve the immune cell population within the TME, referred to as the tumour immune microenvironment (TIME). These non-cell autonomous interactions exert substantial influence over cell behaviour and contribute to the reprogramming of immune and stromal cells into numerous pro-tumourigenic phenotypes. The study of some of these interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion, has led to the development of breakthrough therapeutic advances. Yet many common analyses of the TME either do not retain the spatial data necessary to assess cell-cell interactions, or interrogate few (<10) markers, limiting the capacity for cell phenotyping. Recently developed digital pathology technologies, together with sophisticated bioimage analysis programs, now enable the high-resolution, highly-multiplexed analysis of diverse immune and stromal cell markers within the TME of clinical specimens. In this article, we review the tumour-promoting non-cell autonomous interactions in the TME and their impact on tumour behaviour. We additionally survey commonly used image analysis programs and highly-multiplexed spatial imaging technologies, and we discuss their relative advantages and limitations. The spatial organization of the TME varies enormously between patients, and so leveraging these technologies in future studies to further characterize how non-cell autonomous interactions impact tumour behaviour may inform the personalization of cancer treatment.​.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Diagnóstico por Imagen , Linfocitos T CD8-positivos , Procesamiento de Imagen Asistido por Computador
3.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37318751

RESUMEN

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/patología , Racemetionina/metabolismo , Proliferación Celular/genética , S-Adenosilmetionina/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Mamíferos/metabolismo , Microambiente Tumoral
4.
BMC Oral Health ; 23(1): 206, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024828

RESUMEN

A growing body of research associates the oral microbiome and oral cancer. Well-characterized clinical samples with outcome data are required to establish relevant associations between the microbiota and disease. The objective of this study was to characterize the community variations and the functional implications of the microbiome in low-grade oral epithelial dysplasia (OED) using 16S rRNA gene sequencing from annotated archival swabs in progressing (P) and non-progressing (NP) OED. We characterised the microbial community in 90 OED samples - 30 swabs from low-grade OED that progressed to cancer (cases) and 60 swabs from low-grade OED that did not progress after a minimum of 5 years of follow up (matched control subjects). There were small but significant differences between P and NP samples in terms of alpha diversity as well as beta diversity in conjunction with other clinical factors such as age and smoking status for both taxa and functional predictions. Across all samples, the most abundant genus was Streptococcus, followed by Haemophilus, Rothia, and Neisseria. Taxa and predicted functions were identified that were significantly differentially abundant with progression status (all Ps and NPs), when samples were grouped broadly by the number of years between sampling and progression or in specific time to progression for Ps only. However, these differentially abundant features were typically present only at low abundances. For example, Campylobacter was present in slightly higher abundance in Ps (1.72%) than NPs (1.41%) and this difference was significant when Ps were grouped by time to progression. Furthermore, several of the significantly differentially abundant functions were linked to the Campylobacteraceae family in Ps and may justify further investigation. Larger cohort studies to further explore the microbiome as a potential biomarker of risk in OED are warranted.


Asunto(s)
Microbiota , Neoplasias de la Boca , Estudios de Cohortes , Humanos , Niño , ARN Ribosómico 16S/genética , Microbiota/genética , Masculino , Femenino , Lactante , Preescolar
5.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769181

RESUMEN

Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.


Asunto(s)
Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Femenino , Masculino , Fumar/efectos adversos , Fumar/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Pulmón/patología , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Inflamación/complicaciones , Inflamación/metabolismo , Comorbilidad , Microambiente Tumoral
6.
Front Genet ; 13: 910221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664333

RESUMEN

Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.

7.
Mol Cancer ; 21(1): 68, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255902

RESUMEN

Resident microbial populations have been detected across solid tumors of diverse origins. Sequencing of the airway microbiota represents an opportunity for establishing a novel omics approach to early detection of lung cancer, as well as risk prediction of cancer development. We hypothesize that bacterial shifts in the pre-malignant lung may be detected in non-cancerous airway liquid biopsies collected during bronchoscopy. We analyzed the airway microbiome profile of near 400 patients: epithelial brushing samples from those with lung cancer, those who developed an incident cancer, and those who do not develop cancer after 10-year follow-up. Using linear discriminate analysis, we define and validate a microbial-based classifier that is able to predict incident cancer in patients before diagnosis with no clinical signs of cancer. Our results demonstrate the potential of using lung microbiome profiling as a method for early detection of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Microbiota , Broncoscopía/métodos , Humanos , Biopsia Líquida , Pulmón , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología
8.
Sci Data ; 8(1): 166, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215751

RESUMEN

Proper functioning of the human placenta is critical for maternal and fetal health. While microRNAs (miRNAs) are known to impact placental gene expression, the effects of other small non-coding RNAs (sncRNAs) on the placental transcriptome are not well-established, and are emerging topics in the study of environmental influence on fetal development and reproductive health. Here, we assembled a cohort of 30 placental chorionic villi samples of varying gestational ages (M ± SD = 23.7 ± 11.3 weeks) to delineate the human placental sncRNA transcriptome through small RNA sequence analysis. We observed expression of 1544 sncRNAs, which include 48 miRNAs previously unannotated in humans. Additionally, 18,003 miRNA variants (isomiRs) were identified from the 654 observed miRNA species. This characterization of the term and pre-term placental sncRNA transcriptomes provides data fundamental to future investigations of their regulatory functions in the human placenta, and the baseline expression pattern needed for identifying changes in response to environmental factors, or under disease conditions.


Asunto(s)
Perfilación de la Expresión Génica , Placenta/metabolismo , ARN Pequeño no Traducido/genética , Transcriptoma , Femenino , Edad Gestacional , Humanos , Embarazo
9.
Sci Rep ; 11(1): 14981, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294738

RESUMEN

The placenta is vital to embryonic development and requires a finely-tuned pattern of gene expression, achieved in part by its unique epigenetic landscape. Piwi-interacting RNAs (piRNAs) are a class of small-non-coding RNA with established roles as epigenetic regulators of gene expression, largely via methylation of targeted DNA sequences. The expression of piRNAs have mainly been described in germ cells, but a fraction have been shown to retain expression in adult somatic tissues. To aid in understanding the contribution of these regulators in the placenta, we provide the first description of the piRNA transcriptome in human placentas. We find 297 piRNAs to be preferentially expressed in the human placenta, a subset of which are expressed at higher levels relative to testes samples. We also observed a large proportion of placental piRNAs to be expressed from a single locus, as distinct from canonical cluster locations associated with transposable element silencing. Finally, we find that 15 of the highest-expressed placental piRNAs maps to the DLK1-DIO3 locus, suggesting a link to placental biology. Our findings suggest that piRNAs could contribute to the molecular networks defining placental function in humans, and a biological impact of piRNA expression beyond germ cells.


Asunto(s)
Proteínas de Unión al Calcio/genética , Secuenciación del Exoma/métodos , Yoduro Peroxidasa/genética , Proteínas de la Membrana/genética , Placenta/química , ARN Interferente Pequeño/genética , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Impresión Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Embarazo , Testículo/química
10.
Cancers (Basel) ; 13(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072436

RESUMEN

MicroRNAs (miRNAs) play vital roles in the regulation of normal developmental pathways. However, cancer cells can co-opt these miRNAs, and the pathways that they regulate, to drive pro-tumourigenic phenotypes. Characterization of the miRNA transcriptomes of fetal organs is essential for identifying these oncofetal miRNAs, but it has been limited by fetal sample availability. As oncofetal miRNAs are absent from healthy adult lungs, they represent ideal targets for developing diagnostic and therapeutic strategies. We conducted small RNA sequencing of a rare collection of 25 human fetal lung (FL) samples and compared them to two independent cohorts (n = 140, n = 427), each comprised of adult non-neoplastic lung (ANL) and lung adenocarcinoma (LUAD) samples. We identified 13 oncofetal miRNAs that were expressed in FL and LUAD but not in ANL. These oncofetal miRNAs are potential biomarkers for LUAD detection (AUC = 0.963). Five of these miRNAs are derived from the imprinted C14MC miRNA cluster at the 14q32 locus, which has been associated with cancer development and abnormal fetal and placental development. Additionally, we observed the pulmonary expression of 44 previously unannotated miRNAs. The sequencing of these fetal lung samples also provides a baseline resource against which aberrant samples can be compared.

11.
Curr Res Immunol ; 2: 1-6, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35492394

RESUMEN

The importance of gut microbiome to cancer therapy and response cannot be overstated, however the contribution of the bacterial population to the local solid tumour ecosystem is often overlooked. Seminal studies of tumour-resident microbiomes have shown that relative abundances of specific bacteria in the tumour correlate with survival metrics, implicating the microbiome in patient outcome. Similarly, patterns of microbiome community shifts between tumour-bearing and unaffected organs suggests a role for the tumour microbiome niche in contributing to tumour biology and behaviour. Recent reports of the detection of bacteria in solid tumours of diverse human organs have provided a strong rationale for deciphering the role of the solid-tumour microbiome across all human-host anatomic and physiologic niches, as the microbiome is ubiquitously present throughout the human body. Here, we review the role of the human microbiome in mediating response to therapies, as well as the differences between tumour and non-malignant-resident communities. We discuss the ability of the tumour microbiome to interact with the host, thereby influencing host cell behaviour and cancer-associated processes. Further, we evaluate recent technological advances that allow us to actively quantify these populations and the relationships between cell types. Finally, we suggest how these dynamic interactions can be harnessed for therapeutic benefit in the treatment of cancer.

12.
Sci Rep ; 10(1): 16945, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037279

RESUMEN

The tumour immune microenvironment is a crucial mediator of lung tumourigenesis, and characterizing the immune landscape of patient tumours may guide immunotherapy treatment regimens and uncover novel intervention points. We sought to identify the landscape of tumour-infiltrating immune cells in the context of long non-coding RNA (lncRNAs), known regulators of gene expression. We examined the lncRNA profiles of lung adenocarcinoma (LUAD) tumours by interrogating RNA sequencing data from microdissected and non-microdissected samples (BCCRC and TCGA). Subsequently, analysis of single-cell RNA sequencing data from lung tumours and flow-sorted healthy peripheral blood mononuclear cells identified lncRNAs in immune cells, highlighting their biological and prognostic relevance. We discovered lncRNA expression patterns indicative of regulatory relationships with immune-related protein-coding genes, including the relationship between AC008750.1 and NKG7 in NK cells. Activation of NK cells in vitro was sufficient to induce AC008750.1 expression. Finally, siRNA-mediated knockdown of AC008750.1 significantly impaired both the expression of NKG7 and the anti-tumour capacity of NK cells. We present an atlas of cancer-cell extrinsic immune cell-expressed lncRNAs, in vitro evidence for a functional role of lncRNAs in anti-tumour immune activity, which upon further exploration may reveal novel clinical utility as markers of immune infiltration.


Asunto(s)
Inmunidad/genética , Inmunidad/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Anciano , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/inmunología , Humanos , Células Asesinas Naturales/inmunología , Pulmón/inmunología , Masculino , Pronóstico , Transcriptoma/genética , Transcriptoma/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
13.
Adv Exp Med Biol ; 1224: 35-51, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32036603

RESUMEN

CD4+ T helper (TH) cells are key regulators in the tumour immune microenvironment (TIME), mediating the adaptive immunological response towards cancer, mainly through the activation of cytotoxic CD8+ T cells. After antigen recognition and proper co-stimulation, naïve TH cells are activated, undergo clonal expansion, and release cytokines that will define the differentiation of a specific effector TH cell subtype. These different subtypes have different functions, which can mediate both anti- and pro-tumour immunological responses. Here, we present the dual role of TH cells restraining or promoting the tumour, the factors controlling their homing and differentiation in the TIME, their influence on immunotherapy, and their use as prognostic indicators.


Asunto(s)
Neoplasias/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Microambiente Tumoral/inmunología , Animales , Citocinas/metabolismo , Humanos , Linfocitos T Citotóxicos/inmunología
14.
Front Genet ; 11: 615378, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505435

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have long been implicated in cancer-associated phenotypes. Recently, a class of lncRNAs, known as cis-acting, have been shown to regulate the expression of neighboring protein-coding genes and may represent undiscovered therapeutic action points. The chromatin architecture modification gene HMGA1 has recently been described to be aberrantly expressed in lung adenocarcinoma (LUAD). However, the mechanisms mediating the expression of HMGA1 in LUAD remain unknown. Here we investigate the deregulation of a putative cis-acting lncRNA in LUAD, and its effect on the oncogene HMGA1. METHODS: LncRNA expression was determined from RNA-sequencing data of tumor and matched non-malignant tissues from 36 LUAD patients. Transcripts with significantly deregulated expression were identified and validated in a secondary LUAD RNA-seq dataset (TCGA). SiRNA-mediated knockdown of a candidate cis-acting lncRNA was performed in BEAS-2B cells. Quantitative real-time PCR was used to observe the effects of lncRNA knockdown on the expression of HMGA1. RESULTS: We identified the lncRNA RP11.513I15.6, which we refer to as HMGA1-lnc, neighboring HMGA1 to be significantly downregulated in both LUAD cohorts. Conversely, we found HMGA1 significantly overexpressed in LUAD and anticorrelated with HMGA1-lnc. In vitro experiments demonstrated siRNA-mediated inhibition of HMGA1-lnc in immortalized non-malignant lung epithelial cells resulted in a significant increase in HMGA1 gene expression. CONCLUSION: Our results suggest that HMGA1-lnc is a novel cis-acting lncRNA that negatively regulates HMGA1 gene expression in lung cells. Further characterization of this regulatory mechanism may advance our understanding of the maintenance of lung cancer phenotypes and uncover a novel therapeutic intervention point for tumors driven by HMGA1.

15.
Front Oncol ; 9: 1305, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828039

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) has a poor survival rate mainly due to late stage diagnosis and recurrence. Despite genomic efforts to identify driver mutations and changes in protein-coding gene expression, developing effective diagnostic and prognostic biomarkers remains a priority to guide disease management and improve patient outcome. Recent reports of previously-unannotated microRNAs (miRNAs) from multiple somatic tissues have raised the possibility of HNSCC-specific miRNAs. In this study, we applied a customized in-silico analysis pipeline to identify novel miRNAs from raw small-RNA sequencing datasets from public repositories. We discovered 146 previously-unannotated sequences expressed in head and neck samples that share structural properties highly characteristic of miRNAs. The combined expression of the novel miRNAs revealed tissue and context-specific patterns. Furthermore, comparison of tumor with non-malignant tissue samples (n = 43 pairs) revealed 135 of these miRNAs as differentially expressed, most of which were overexpressed or exclusively found in tumor samples. Additionally, a subset of novel miRNAs was significantly associated with HPV infection status and patient outcome. A prognostic-model combining novel and known miRNA was developed (multivariate Cox regression analysis) leading to an improved death and relapse risk stratification (log rank p < 1e-7). The presence of these miRNAs was corroborated both in an independent dataset and by RT-qPCR analysis, supporting their potential involvement in HNSCC. In this study, we report the discovery of 146 novel miRNAs in head and neck tissues and demonstrate their potential biological significance and clinical relevance to head and neck cancer, providing a new resource for the study of HNSCC.

16.
Nat Commun ; 10(1): 5438, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780666

RESUMEN

Gene function in cancer is often cell type-specific. The epithelial cell-specific transcription factor ELF3 is a documented tumor suppressor in many epithelial tumors yet displays oncogenic properties in others. Here, we show that ELF3 is an oncogene in the adenocarcinoma subtype of lung cancer (LUAD), providing genetic, functional, and clinical evidence of subtype specificity. We discover a region of focal amplification at chromosome 1q32.1 encompassing the ELF3 locus in LUAD which is absent in the squamous subtype. Gene dosage and promoter hypomethylation affect the locus in up to 80% of LUAD analyzed. ELF3 expression was required for tumor growth and a pan-cancer expression network analysis supports its subtype and tissue specificity. We further show that ELF3 displays strong prognostic value in LUAD but not LUSC. We conclude that, contrary to many other tumors of epithelial origin, ELF3 is an oncogene and putative therapeutic target in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Carcinoma de Células Escamosas/genética , Proteínas de Unión al ADN/genética , Neoplasias Pulmonares/genética , Oncogenes/genética , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética , Células A549 , Animales , Carcinoma/genética , Metilación de ADN , Amplificación de Genes/genética , Dosificación de Gen , Humanos , Ratones , Trasplante de Neoplasias , Mapas de Interacción de Proteínas , Trasplante Heterólogo
17.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739401

RESUMEN

Recent studies have uncovered microRNAs (miRNAs) that have been overlooked in early genomic explorations, which show remarkable tissue- and context-specific expression. Here, we aim to identify and characterize previously unannotated miRNAs expressed in gastric adenocarcinoma (GA). Raw small RNA-sequencing data were analyzed using the miRMaster platform to predict and quantify previously unannotated miRNAs. A discovery cohort of 475 gastric samples (434 GA and 41 adjacent nonmalignant samples), collected by The Cancer Genome Atlas (TCGA), were evaluated. Candidate miRNAs were similarly assessed in an independent cohort of 25 gastric samples. We discovered 170 previously unannotated miRNA candidates expressed in gastric tissues. The expression of these novel miRNAs was highly specific to the gastric samples, 143 of which were significantly deregulated between tumor and nonmalignant contexts (p-adjusted < 0.05; fold change > 1.5). Multivariate survival analyses showed that the combined expression of one previously annotated miRNA and two novel miRNA candidates was significantly predictive of patient outcome. Further, the expression of these three miRNAs was able to stratify patients into three distinct prognostic groups (p = 0.00003). These novel miRNAs were also present in the independent cohort (43 sequences detected in both cohorts). Our findings uncover novel miRNA transcripts in gastric tissues that may have implications in the biology and management of gastric adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor , MicroARNs/genética , Neoplasias Gástricas/genética , Adenocarcinoma/patología , Adulto , Anciano , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Neoplasias Gástricas/patología , Transcriptoma
18.
PLoS One ; 14(8): e0221371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31419261

RESUMEN

INTRODUCTION: The sponging of microRNAs by a long non-coding RNA (lncRNA) away from their coding gene targets is a conceptually-simple, yet biologically-complex method of lncRNA-mediated gene regulation. Currently, predictions of genes that participate in sponge-based regulation are largely based on sequence homology alone, which may not adequately reflect the cellular environment in which lncRNA:miRNA pairs interact. The vast number of potential interactions generated by these predictions impedes the identification of functional gene regulatory relationships, which necessitates an approach that considers biological context. XIST, the female-specific lncRNA canonically involved in silencing the X chromosome, has been suggested by many studies to act as a miRNA sponge. The sex-specificity of XIST provides the opportunity to study the biological feasibility of proposed XIST-miRNA interactions. Here we take a comprehensive approach by considering factors that affect possible regulation through XIST-miRNA sponging. RESULTS: To identify the most feasible candidates in a particular tissue (lung adenocarcinomas), we considered protein-coding genes that (1) were positively correlated with XIST expression within sexes, (2) were targeted by miRNAs shared with XIST, and (3) expressed in lung adenocarcinoma. This revealed a robust set of 124 genes potentially positively regulated by XIST through the sequestration of 804 shared miRNAs. We then used the basic sex-specific nature of XIST to compare the changes in miRNA-target gene relationships in endogenously high-XIST and low-XIST systems to discover a high-confidence set of only 13 miRNA-gene pairs. As XIST is expressed exclusively in the nucleus, we validated the nuclear presence of several of these high-confidence miRNAs using RT-qPCR, confirming the co-localization required for XIST to interact with these species. CONCLUSIONS: We use a biology-driven approach to identify genes defended from miRNA-based inhibition by the lncRNA XIST. Importantly, we identify that only a small subset of miRNAs predicted by sequence homology alone have the capacity to mediate the XIST-target gene axis, as they are enriched in the nucleus and able to co-localize with XIST for sponging. Our results reinforce the necessary consideration of biological features in future studies of lncRNA:miRNA interactions.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Núcleo Celular/genética , Cromosomas Humanos X/genética , Femenino , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Homología de Secuencia de Ácido Nucleico
20.
Front Genet ; 10: 138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30894871

RESUMEN

Transcriptome sequencing has led to the widespread identification of long non-coding RNAs (lncRNAs). Subsequently, these genes have been shown to hold functional importance in human cellular biology, which can be exploited by tumors to drive the hallmarks of cancer. Due to the complex tertiary structure and unknown binding motifs of lncRNAs, there is a growing disparity between the number of lncRNAs identified and those that have been functionally characterized. As such, lncRNAs deregulated in cancer may represent critical components of cancer pathways that could serve as novel therapeutic intervention points. Pseudogenes are non-coding DNA sequences that are defunct relatives of their protein-coding parent genes but retain high sequence similarity. Interestingly, certain lncRNAs expressed from pseudogene loci have been shown to regulate the protein-coding parent genes of these pseudogenes in trans particularly because of this sequence complementarity. We hypothesize that this phenomenon occurs more broadly than previously realized, and that aberrant expression of lncRNAs overlapping pseudogene loci provides an alternative mechanism of cancer gene deregulation. Using RNA-sequencing data from two cohorts of lung adenocarcinoma, each paired with patient-matched non-malignant lung samples, we discovered 104 deregulated pseudogene-derived lncRNAs. Remarkably, many of these deregulated lncRNAs (i) were expressed from the loci of pseudogenes related to known cancer genes, (ii) had expression that significantly correlated with protein-coding parent gene expression, and (iii) had lncRNA protein-coding parent gene expression that was significantly associated with survival. Here, we uncover evidence to suggest the lncRNA-pseudogene-protein-coding gene axis as a prominent mechanism of cancer gene regulation in lung adenocarcinoma, and highlights the clinical utility of exploring the non-coding regions of the cancer transcriptome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...